Accelerating Decision Making Under
Partial Observability Using Learned

Action Priors

by Ntokozo Jay Mabena

Supervised by Benjamin Rosman

Contents

» Introduction

» MDPs

» Reinforcement Learning
» POMDPs

» SARSOP Algorithm

» Research Project Details
» Recent Progress

Introduction

» Operational Uncertainty
- Ambiguity in a robot's self-perceived state
- adds ambiguity intfo the robot's state of operation.
- Root cause of unsafe or risky behaviour

» Autonomous robots are overwhelmed with
contingencies i.e

;‘ ~
5

» Dynamic Environments
- Handling uncertainty is essential
- Conftrol errors
- limited sensing accuracy
- iInaccurate models of the environment

» Decision Making under imperfect state

INnformation

- Depends on all states
- Requires a sensing proficiency

» Disadvantage
- Computationally expensivelll

» Solution
» POMDPs

Markov Decision Processes

» Defined as a tuple (S, 4, T, R, y) where
- S states,

- A actions,

- T:SxAxS—[01],
“R:SXAXS—->R,
-y €10,1]

» States are fully observable

p—

» Goal of alearning agent
- Compute the policy n(s): S— A

» Example:
- Domain

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Policy m(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Optimal policy ©*(s)

» Example:
- Policy changes with due to living reward

= = = > == @

t - ©® t t ©

t & |3 t | & | @ @
Living Reward= — 0.01 Living Reward = — 0.03

= = =@ - ==

t t @ t -

t | =» Tt | = - | = | = | 4

Living Reward = —0.04 Living Reward = — 2

» Value functions
- Assigns a value to every state

» Value of a state

- Expected reward/return of starting at that state and
following a particular policy (s)

V ﬂ(s): ZT (s, 7(s), s')[R(s, (s),8')+ V7 (s)]

s'eS

» Value of an action in a state

- Expected reward/return of starting at a state s, taking
that action a, and then following a particular policy

7(s)
Qﬁ (s,a)= ZT (s, a, s')[R(s, a,s)+ N7 (s)]

» Optimal sought after quantities

V =D (S,ﬂ*(S),S[R(S, oD (S')}

s'eS

Q*(s, a)= ZT (s, a, s')[R(s, a,s')+ N *(s')]

s'eS

7'(s)=argmaxQ’(s, a)

» Value Iteration
- The value of a state at time t is computed to be

Vt+1(s) = m:xZT (s, a, s')[r(s, a, s')+ M (s)]

s'eS

where Vy(s) =0

(5, a) is a Q-state
(5, @ s’ is a Transition

» Value lteration

- The value of a state af time t for a policy m is
computed to be

VG4 (5)=max T(s.7(5) 8l 7(9)8)+)

s'eS

where Vy(s) =0

(5, a) is a Q-state
(5, @ s’ is a Transition

Reinforcement Learning

» Uses a trial and error approach to finding a
policy

» Agent Learns from experience
» Q-Learning
- Model free algorithm

- Exploration vs Exploitation h)
- Learns an optimal policy ﬁ

p—

» Q-Learning
- Agent acts randomly in domain with probability 1 — ¢
- Exploits current policy with probability &

Algorithm s-greedy ()-learning

1: Initialise Q(s,a) arbitrarily

2: for every episode k=1... K do
3 Choose initial state s

1 repeat

5

{arg max, Q(s,a) w.p.1—¢
a 4+

aeA W.p. €
6: Take action a, observe r, s’
Q(s,0) « Q(s,a) +a® [r(s,a, 5') + ymaxy Q(s',a') — Q(s,a)]
8 s+ g
9: until s is terminal
10: end for

11: return Q(s,a)

Action Priors

» Their purpose is to provide knowledge about
which actions are rational in parficular
sCenarios

» This knowledge is established by considering
the statistics of action choices over the
ifetime of the agent

» Correspond to general common sense
behaviours

A\

» Perception-based action priors depend on
the agent’s sensory features

» Acquiring Perception based Action Priors

- Gathered by solving many tasks in the same or similar
domain

- Maintains a-counts which are dependent on
observations

1 ; 1 t — arg C c new e I
@2&%(@) " Qpey(a) +1 ifa ?llg max, Q™" (s, a)
Qo(s)(a) otherwise

- Action prior is 8,(a)~Dir(a,(a))

Partially Observable Markov
Decision Processes

» Defined asatuple (S, A, O, T, Z, R, y) where
- S states,

- A actions,

* O observations,

- T:SXAXS - [01],

- Z:SXA X0 - [0,1],
“R:SXAXS - R,
-y € [0,1]

» States are partially observable

p—

» Solving a POMDRP is very similar to solving an
MDP

» Similarities
- State fransitions are still stochastic
- Value function is a function of our current state
- We still perform Bellman backups to compute V

» Differences

- Agent maintains a probability distribution of where it may be in
space

- Agent can make (stochastic) observations from its current belief

» Belief State
- Probability distribution over world states

» Example
- Uniform Belief state

0.00091 | 0.09091 | 0.09091 | MAejzil

0.09091 @

0.09091 | 0.09091 | 0.09091 | 0.09051

0.09091

» Belief transitions

- After taking action a and observing o, transitions
are computed using

Z(s',a,0)> T(s,a,s")b(s)

seS

b'(s')= P(o]b,a)

known as the Belief Update formula

» Example

0333 | 0333 . 0.333 0.100 | 0.450 . 0.450 0.100 | 0.164 . 0.736
i))

Belief over states.

» Rewards

- The reward of taking an action from some belief is the
reward function over the belief state distribution

r(b,a)=> R(s,a,)b(s)

seS

» Value Functions
- The value of a belief is computed using

V(b)="> V(s)b(s)

seS

» Value Functions

- We can express
V(b)=2_V(s)bls)

seS

more compactly using

V(b)=a-b

- Where

b=(P(s, |b),P(s, |b)...., P(s, | b))

a=N)V, V()

Is called an alpha-vector

» Value Functions
- The optimal value of a belief is computed using

V'(b)=max(ab)

- The value function of a POMDP can be represented
using linear line segments representing alpha-vectors

» Example

» Value lteration
- The value of a belief at fime t is computed o be

V,.1(b) = max ZR(S a)b(s)+ Y P(o|b,a)V,(b)

| SeS 0O

- Here we compute V;,,, the parsimonious

representation of V., from V., the parsimonious

representation of V,

» Value Functions

- The most naive way to construct V., is by
enumerating all possible actions and observation
mappings from V.

© Thus [Veyq] = |1‘1||Vt||0I

- Curse of history and
dimesionality problem
make POMDPs
computationally v(b)
intfractable

- But many a-vectorsin V,
may be dominated by
others

b(s,)

v(b)

» Value Functions
- Pruning

’ V(b)

-+ Improves computational speeds

bis

Point-based POMDPs

» Early Algorithms

* Sample a set of beliefs B from B to approximate the belief space
and compute an approximately optimal value function over
those sampled points

» Later Algorithms

* focus on reachable beliefs R(bg) from an initial belief point b

» SARSOP

* focuses on the optimally reachable beliefs R*(b;) from an initial
belief point by

SARSOP Algorithm

R(bo)

» Algorithm Overview
- Successively build a free Ty through sampling from b,

SARSOP BASICS M1

repeat %2
SAMPLE(Tg,T) /
a-vector BACKUP(Tg,T,b) .
PRUNE(T, T)

until terminate

\

» Algorithm Overview

- Successively build a free Ty through sampling from b,

1. Sample new belief points with bias towards R*

2. Backup the information of the
children of (similarly to Bellman
backup)

3. Prune dominated a-vectors and
Nnot needed nodes

4. Repeat until convergence

SARSOP BASICS

repeat
SAPLE(T, T)
¢-vector BACKUP(T, I'b)
PRUNE(T,)

until terminate

\

» Sampling B

- Upperbound V

initialised using the MDP, FIB or Sawtooth
Approximation

- Lowerbound \l
inifialised using Fixed Action Policy or Blind Policy

Upper Bound V |

Optimal V*

- Goalis foo minimise the
the gap between V Lower Bound
and V atb

Belief b

» Sampling Strategy

> Traverse down the tree using
- action with the highest upper bound V(b)
- the observation that makes the largest
conftribution to the gap at the root

- Nofe
- The algorithm keeps a sampling threshold
of]/_tE, where the target gap size Qt by IS €

» Selective Deep Sampling

- We may sometimes want 1o go deeper past the
vy ~te threshold

-« Predict IV*(b) and see if knowing it will improve the
bounds at the rooft
if yes then go deeper
if no then stop

» Selective Deep Sampling

> Prediction
- features: initial upper bound and entropy of b

entropy of b

initial upper bound
([

- use the average of the beliefs or the initial upper
bound if bin is empty

» Pruning

* Prunes a-vector only if it is dominated over R*
(SARSOP uses beliefs B € Ty as a proxy for R*)

- |f a(b,a)<9(b,a), prunes all sampled points in the
subtree after taking action a at b

. If a-b<a-b foral a_; at every point b’ within § of b
prune q; 1

Belief b

Research Project

» To show how action priors can accelerate the workings

of the SARSOP algorithm through the implementation of
action priors

» Gather Action Priors using Reinforcement learning and
the SARSOP algorithm

» Action Priors fromm SARSOP

1. Gathered from Sampling and
2. Simulation

» Using the priors

- Will be used as an add on to prune away the alpha
vectors of the SARSOP algorithm

- Will be used to choose actions in the sampling
technigue of SARSOP

» Domain

- Maze domain in which we allow a robot agent to

travel from

- Tasks will be to travel from an initial location to some

goal location

» Robot Perception Capability

=I=I=l:'=l=llllllllllllll
ENENEGUN ENEENEEEEENENEEEED
AR EERENEES S

ENEEER-4ENENEEENENENEEEED
BB BB EEREEREEREDR
AEEEEEEELNENEENEEEENNEEEE
Al B ERNEEREEEREER
AEEEEEEEEEANEENEEEENEEEED
E R B EEENEENENEREER
IIIIIIIIIIIIIEIIIIIIIIIII
IIIIIIIIIIIIIIILIIIIIIIII
BB BB EREERELENEEREDBD
IIIIIIIIIIIIIIIIII!IIIIII
E I B R EEENREEALEEE
ENENENEENEEENEEENENERNEEED
E IR EEEREENREARUEDR
ENEEEEEEEEEEEEEEEEEEED. NN
AR BB EEENEEENERYN
AEEEEEEEEEENNENEENENEEEEN
E IR EREEREEREERENEER
ANEEENEEEEENEEENENENEEEED
E IR EEEREENEEREDR
EEEEEEEEEENNEENEEEENEEEEE

Recent Progress

Obsenvation | up |[Down|Left|Right Observation | yup |[pown|Left|Right

B 0.01|0.49|0.01|0.49 | 0.00|0.52|0.00|0.48

B 0.01|0.57(0.01|0.41 | 0.00|0. 86| 0.00|0.14

B 0.01|0.41(0.01|0. 57 | 0.00|0.29|0.00|0.71

[| 0.01|0.49|0.01|0.49 | 0.00|0. 35| 0.00|0.65

e 0.02|0.70[0.02|0.25 || 0.00|1.00|0.00|0.00

[0.02|0.25|0.02|0.70 e 0.00|0.32|0.00|0.68

E 0.04|0.46(0.04|0.46 || | 0.00|0.60|0.00|0.40

]| 0.25|0.25[0.25|0.25] 0.25|0.25|0.25|0.25

] 0.01|0.42[0.01|0.55 rE 0.00|0.85|0.00|0.15

N 0.01|0.55([0.01|0.42 e 0.00|0.45|0.00|0.55

B | 0-25[0.25[0.25/0.25 B | 0-25[0.25/0.25/0.25

B | 0-04[0.46(0.04/0.46 Bl |0.00(1.00{0.00{0.00

Bl | 0-04|0.46|0.04/0.46 Bl |©.00(1.00/0.00|0.00

_ Bl |0 25|0.25(|0.25[0.25 Bl |0.25/0.25/0.25{0.25
Domain B | 0-04|0.46]|0.04|0.46 BN | 0.00|1.00|0.00|0.00

Reinforcement Learning Priors SARSCOP Simulation Priors

