
Accelerating Decision Making Under
Partial Observability Using Learned

Action Priors

by Ntokozo Jay Mabena

Supervised by Benjamin Rosman

 Introduction

 MDPs

 Reinforcement Learning

 POMDPs

 SARSOP Algorithm

 Research Project Details

 Recent Progress

 Operational Uncertainty
 Ambiguity in a robot's self-perceived state

 adds ambiguity into the robot's state of operation.

 Root cause of unsafe or risky behaviour

 Autonomous robots are overwhelmed with

contingencies i.e

 Dynamic Environments
◦ Handling uncertainty is essential

 Control errors

 limited sensing accuracy

 inaccurate models of the environment

 Decision Making under imperfect state

information
 Depends on all states

 Requires a sensing proficiency

 Disadvantage
 Computationally expensive!!!

 Solution
 POMDPs

 Defined as a tuple 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 where
 S states,

 A actions,

 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] ,

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ ,

 𝛾 ∈ [0,1]

 States are fully observable

 Goal of a learning agent

 Compute the policy 𝜋 𝑠 : 𝑆 → 𝐴

 Example:
 Domain

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Policy changes with due to living reward

 Value functions
 Assigns a value to every state

 Value of a state
 Expected reward/return of starting at that state and

following a particular policy 𝜋 𝑠

Ss

sVsssRsssTsV
'

''),(,'),(,

 Value of an action in a state
 Expected reward/return of starting at a state 𝑠, taking

that action 𝑎, and then following a particular policy
𝜋 𝑠

 Optimal sought after quantities

Ss

sVsasRsasTasQ
'

'',,',,,

Ss

sVsasRsasTasQ
'

*
*

'',,',,,

Ss

sVsssRsssTsV
'

''),(,'),(,

*

 asQs
a

,maxarg **

 Value Iteration
 The value of a state at time 𝑡 is computed to be

 where 𝑉0 𝑠 = 0

Ss

t
a

t sVsasrsasTsV

'

1 '',,',,max

 Value Iteration
 The value of a state at time 𝑡 for a policy 𝜋 is

computed to be

 where 𝑉0 𝑠 = 0

Ss

t
a

t sVsssrsssTsV

'

1 ''),(,'),(,max

 Uses a trial and error approach to finding a

policy

 Agent Learns from experience

 Q-Learning
 Model free algorithm

 Exploration vs Exploitation

 Learns an optimal policy

 Q-Learning
 Agent acts randomly in domain with probability 1 − 휀

 Exploits current policy with probability 휀

 Their purpose is to provide knowledge about

which actions are rational in particular

scenarios

 This knowledge is established by considering

the statistics of action choices over the

lifetime of the agent

 Correspond to general common sense

behaviours

 Perception-based action priors depend on

the agent’s sensory features

 Acquiring Perception based Action Priors
 Gathered by solving many tasks in the same or similar

domain

 Maintains 𝛼-counts which are dependent on

observations

 Action prior is 𝜃𝑜 𝑎 ~Dir(𝛼𝑜(𝑎))

 Defined as a tuple 𝑆, 𝐴, 𝑂 , 𝑇, 𝑍, 𝑅, 𝛾 where
 S states,

 A actions,

 O observations,

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ,

 𝑍: 𝑆 × 𝐴 × 𝑂 → 0,1 ,

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ,

 𝛾 ∈ [0,1]

 States are partially observable

 Solving a POMDP is very similar to solving an

MDP

 Similarities
 State transitions are still stochastic

 Value function is a function of our current state

 We still perform Bellman backups to compute 𝑉

 Differences
 Agent maintains a probability distribution of where it may be in

space

 Agent can make (stochastic) observations from its current belief

 Belief State
 Probability distribution over world states

 Example
 Uniform Belief state

 Belief transitions
 After taking action 𝑎 and observing 𝑜, transitions

are computed using

 known as the Belief Update formula

 Example

 aboP

sbsasToasZ

sb Ss

,|

)',,(),,'(

''

 Rewards
 The reward of taking an action from some belief is the

reward function over the belief state distribution

 Value Functions
 The value of a belief is computed using

Ss

sbasRabr),,(,

Ss

sbsVbV)(

 Value Functions
 We can express

 more compactly using

 Where

 is called an alpha-vector

Ss

sbsVbV)(

 bbV

)(,),(),(21 nsVsVsV

)|(,),|(),|(21 bsPbsPbsPb n

 Value Functions
 The optimal value of a belief is computed using

 The value function of a POMDP can be represented

using linear line segments representing alpha-vectors

 Example

 bbV

max*

 Value Iteration
 The value of a belief at time 𝑡 is computed to be

 Here we compute 𝒱𝑡+1, the parsimonious

 representation of 𝑉𝑡+1 from 𝒱𝑡, the parsimonious

 representation of

 '),|(),(max1 bVaboPsbasRbV t

Ss Oo
a

t

tV

 Value Functions
 The most naive way to construct 𝒱𝑡+1 is by

enumerating all possible actions and observation
mappings from 𝒱𝑡.

 Thus 𝒱𝑡+1 = 𝐴 |𝒱𝑡||𝒪|

 Curse of history and

 dimesionality problem

 make POMDPs

 computationally

 intractable

 But many 𝛼-vectors in 𝒱𝑡

 may be dominated by

 others

 Value Functions
 Pruning

 Improves computational speeds

 Early Algorithms
 Sample a set of beliefs 𝐵 from 𝓑 to approximate the belief space

and compute an approximately optimal value function over
those sampled points

 Later Algorithms
 focus on reachable beliefs 𝑅(𝑏0) from an initial belief point 𝑏0

 SARSOP
 focuses on the optimally reachable beliefs 𝑅∗(𝑏0) from an initial

belief point 𝑏0

 Algorithm Overview
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0

 Algorithm Overview
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0

1. Sample new belief points with bias towards 𝑅∗

2. Backup the information of the

children of (similarly to Bellman

backup)

3. Prune dominated 𝛼-vectors and

not needed nodes

4. Repeat until convergence

 Sampling
 Upperbound

 initialised using the MDP, FIB or Sawtooth

 Approximation

 Lowerbound

 initialised using Fixed Action Policy or Blind Policy

 Goal is too minimise the

 the gap between

 and at 𝑏

V

V

V
V

 Sampling Strategy

◦ Traverse down the tree using

 action with the highest upper bound 𝑉 𝑏

 the observation that makes the largest

 contribution to the gap at the root

◦ Note

 The algorithm keeps a sampling threshold

 of 𝛾−𝑡߳, where the target gap size at 𝑏0 is ߳

 Selective Deep Sampling

 We may sometimes want to go deeper past the

𝛾−𝑡߳ threshold

 Predict 𝑉∗(𝑏) and see if knowing it will improve the

bounds at the root

 if yes then go deeper

 if no then stop

 Selective Deep Sampling

◦ Prediction

 features: initial upper bound and entropy of 𝑏

 use the average of the beliefs or the initial upper

bound if bin is empty

 Pruning

 Prunes 𝛼-vector only if it is dominated over 𝑅∗

 (SARSOP uses beliefs 𝐵 ∈ 𝑇𝑅 as a proxy for 𝑅∗)

 If , prunes all sampled points in the

subtree after taking action 𝑎 at 𝑏

 If for all 𝑎¬𝑖 at every point 𝑏′ within 𝛿 of 𝑏

prune 𝑎𝑖

),(),(abQabQ

'' baba ii

 To show how action priors can accelerate the workings

of the SARSOP algorithm through the implementation of

action priors

 Gather Action Priors using Reinforcement learning and

the SARSOP algorithm

 Action Priors from SARSOP
1. Gathered from Sampling and

2. Simulation

 Using the priors

 Will be used as an add on to prune away the alpha

vectors of the SARSOP algorithm

 Will be used to choose actions in the sampling

technique of SARSOP

 Domain

 Maze domain in which we allow a robot agent to

travel from

 Tasks will be to travel from an initial location to some

goal location

 Robot Perception Capability

Domain

