
Accelerating Decision Making Under
Partial Observability Using Learned

Action Priors

by Ntokozo Jay Mabena

Supervised by Benjamin Rosman

 Introduction

 MDPs

 Reinforcement Learning

 POMDPs

 SARSOP Algorithm

 Research Project Details

 Recent Progress

 Operational Uncertainty
 Ambiguity in a robot's self-perceived state

 adds ambiguity into the robot's state of operation.

 Root cause of unsafe or risky behaviour

 Autonomous robots are overwhelmed with

contingencies i.e

 Dynamic Environments
◦ Handling uncertainty is essential

 Control errors

 limited sensing accuracy

 inaccurate models of the environment

 Decision Making under imperfect state

information
 Depends on all states

 Requires a sensing proficiency

 Disadvantage
 Computationally expensive!!!

 Solution
 POMDPs

 Defined as a tuple 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 where
 S states,

 A actions,

 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] ,

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ ,

 𝛾 ∈ [0,1]

 States are fully observable

 Goal of a learning agent

 Compute the policy 𝜋 𝑠 : 𝑆 → 𝐴

 Example:
 Domain

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Policy 𝜋 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Optimal policy 𝜋∗ 𝑠

 Example:
 Policy changes with due to living reward

 Value functions
 Assigns a value to every state

 Value of a state
 Expected reward/return of starting at that state and

following a particular policy 𝜋 𝑠

        




Ss

sVsssRsssTsV
'

''),(,'),(, 


 Value of an action in a state
 Expected reward/return of starting at a state 𝑠, taking

that action 𝑎, and then following a particular policy
𝜋 𝑠

 Optimal sought after quantities

        




Ss

sVsasRsasTasQ
'

'',,',,, 




        




Ss

sVsasRsasTasQ
'

*
*

'',,',,, 

       










Ss

sVsssRsssTsV
'

''),(,'),(,

*

   asQs
a

,maxarg ** 

 Value Iteration
 The value of a state at time 𝑡 is computed to be

 where 𝑉0 𝑠 = 0

        


 

Ss

t
a

t sVsasrsasTsV

'

1 '',,',,max 

 Value Iteration
 The value of a state at time 𝑡 for a policy 𝜋 is

computed to be

 where 𝑉0 𝑠 = 0

        


 

Ss

t
a

t sVsssrsssTsV

'

1 ''),(,'),(,max  

 Uses a trial and error approach to finding a

policy

 Agent Learns from experience

 Q-Learning
 Model free algorithm

 Exploration vs Exploitation

 Learns an optimal policy

 Q-Learning
 Agent acts randomly in domain with probability 1 − 𝜀

 Exploits current policy with probability 𝜀

 Their purpose is to provide knowledge about

which actions are rational in particular

scenarios

 This knowledge is established by considering

the statistics of action choices over the

lifetime of the agent

 Correspond to general common sense

behaviours

 Perception-based action priors depend on

the agent’s sensory features

 Acquiring Perception based Action Priors
 Gathered by solving many tasks in the same or similar

domain

 Maintains 𝛼-counts which are dependent on

observations

 Action prior is 𝜃𝑜 𝑎 ~Dir(𝛼𝑜(𝑎))

 Defined as a tuple 𝑆, 𝐴, 𝑂 , 𝑇, 𝑍, 𝑅, 𝛾 where
 S states,

 A actions,

 O observations,

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ,

 𝑍: 𝑆 × 𝐴 × 𝑂 → 0,1 ,

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ,

 𝛾 ∈ [0,1]

 States are partially observable

 Solving a POMDP is very similar to solving an

MDP

 Similarities
 State transitions are still stochastic

 Value function is a function of our current state

 We still perform Bellman backups to compute 𝑉

 Differences
 Agent maintains a probability distribution of where it may be in

space

 Agent can make (stochastic) observations from its current belief

 Belief State
 Probability distribution over world states

 Example
 Uniform Belief state

 Belief transitions
 After taking action 𝑎 and observing 𝑜, transitions

are computed using

 known as the Belief Update formula

 Example

 
 

 aboP

sbsasToasZ

sb Ss

,|

)',,(),,'(

''



 Rewards
 The reward of taking an action from some belief is the

reward function over the belief state distribution

 Value Functions
 The value of a belief is computed using

   



Ss

sbasRabr),,(,

   



Ss

sbsVbV)(

 Value Functions
 We can express

 more compactly using

 Where

 is called an alpha-vector

   



Ss

sbsVbV)(

  bbV 

)(,),(),(21 nsVsVsV 

)|(,),|(),|(21 bsPbsPbsPb n

 Value Functions
 The optimal value of a belief is computed using

 The value function of a POMDP can be represented

using linear line segments representing alpha-vectors

 Example

   bbV  


max*

 Value Iteration
 The value of a belief at time 𝑡 is computed to be

 Here we compute 𝒱𝑡+1, the parsimonious

 representation of 𝑉𝑡+1 from 𝒱𝑡, the parsimonious

 representation of

     







  

 
 '),|(),(max1 bVaboPsbasRbV t

Ss Oo
a

t 

tV

 Value Functions
 The most naive way to construct 𝒱𝑡+1 is by

enumerating all possible actions and observation
mappings from 𝒱𝑡.

 Thus 𝒱𝑡+1 = 𝐴 |𝒱𝑡||𝒪|

 Curse of history and

 dimesionality problem

 make POMDPs

 computationally

 intractable

 But many 𝛼-vectors in 𝒱𝑡

 may be dominated by

 others

 Value Functions
 Pruning

 Improves computational speeds

 Early Algorithms
 Sample a set of beliefs 𝐵 from 𝓑 to approximate the belief space

and compute an approximately optimal value function over
those sampled points

 Later Algorithms
 focus on reachable beliefs 𝑅(𝑏0) from an initial belief point 𝑏0

 SARSOP
 focuses on the optimally reachable beliefs 𝑅∗(𝑏0) from an initial

belief point 𝑏0

 Algorithm Overview
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0

 Algorithm Overview
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0

1. Sample new belief points with bias towards 𝑅∗

2. Backup the information of the

children of (similarly to Bellman

backup)

3. Prune dominated 𝛼-vectors and

not needed nodes

4. Repeat until convergence

 Sampling
 Upperbound

 initialised using the MDP, FIB or Sawtooth

 Approximation

 Lowerbound

 initialised using Fixed Action Policy or Blind Policy

 Goal is too minimise the

 the gap between

 and at 𝑏

V

V

V
V

 Sampling Strategy

◦ Traverse down the tree using

 action with the highest upper bound 𝑉 𝑏

 the observation that makes the largest

 contribution to the gap at the root

◦ Note

 The algorithm keeps a sampling threshold

 of 𝛾−𝑡߳, where the target gap size at 𝑏0 is ߳

 Selective Deep Sampling

 We may sometimes want to go deeper past the

𝛾−𝑡߳ threshold

 Predict 𝑉∗(𝑏) and see if knowing it will improve the

bounds at the root

 if yes then go deeper

 if no then stop

 Selective Deep Sampling

◦ Prediction

 features: initial upper bound and entropy of 𝑏

 use the average of the beliefs or the initial upper

bound if bin is empty

 Pruning

 Prunes 𝛼-vector only if it is dominated over 𝑅∗

 (SARSOP uses beliefs 𝐵 ∈ 𝑇𝑅 as a proxy for 𝑅∗)

 If , prunes all sampled points in the

subtree after taking action 𝑎 at 𝑏

 If for all 𝑎¬𝑖 at every point 𝑏′ within 𝛿 of 𝑏

prune 𝑎𝑖

),(),(abQabQ 

'' baba ii  

 To show how action priors can accelerate the workings

of the SARSOP algorithm through the implementation of

action priors

 Gather Action Priors using Reinforcement learning and

the SARSOP algorithm

 Action Priors from SARSOP
1. Gathered from Sampling and

2. Simulation

 Using the priors

 Will be used as an add on to prune away the alpha

vectors of the SARSOP algorithm

 Will be used to choose actions in the sampling

technique of SARSOP

 Domain

 Maze domain in which we allow a robot agent to

travel from

 Tasks will be to travel from an initial location to some

goal location

 Robot Perception Capability

Domain

