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 Operational Uncertainty 
 Ambiguity in a robot's self-perceived state 

 adds ambiguity into the robot's state of operation. 

 Root cause of unsafe or risky behaviour  

 

 Autonomous robots are overwhelmed with 

contingencies i.e 

 
 

 

 



 Dynamic Environments 
◦ Handling uncertainty is essential 

 Control errors 

 limited sensing accuracy 

 inaccurate models of the environment 

 

 Decision Making under imperfect state 

information 
 Depends on all states 

 Requires a sensing proficiency 

 

 

 



 Disadvantage 
 Computationally expensive!!! 

 

 

 

 

 

 

 

 

 

 Solution 
 POMDPs 

 

 

 

 

 

 

 

 

 

 



 Defined as a tuple 𝑆, 𝐴, 𝑇,  𝑅, 𝛾  where  
 S  states,  

 A actions,  

 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] , 

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ , 

 𝛾 ∈ [0,1] 
 

 States are fully observable 

 



 Goal of a learning agent 

 Compute the policy 𝜋 𝑠 :   𝑆 → 𝐴 

 

 Example: 
 Domain 
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 Example: 
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 Example: 
 Policy changes with due to living reward 



 Value functions 
 Assigns a value to every state 

 

 Value of a state 
 Expected reward/return of starting at that state and 

following a particular policy 𝜋 𝑠   
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 Value of an action in a state 
 Expected reward/return of starting at a state  𝑠, taking 

that action  𝑎, and then following a particular policy 
𝜋 𝑠   

 

 

 

 Optimal sought after quantities 
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 Value Iteration 
 The value of a state at time 𝑡 is computed to be 

 

 

 

 

 where 𝑉0 𝑠 = 0 
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 Value Iteration 
 The value of a state at time 𝑡 for a policy  𝜋  is 

computed to be  

 

 

 

 

 where 𝑉0 𝑠 = 0 
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 Uses a trial and error approach to finding a 

policy  

 

 Agent Learns from experience 

 

 Q-Learning 
 Model free algorithm 

 Exploration vs Exploitation 

 Learns an optimal policy 

 



 Q-Learning 
 Agent acts randomly in domain with probability  1 − 𝜀 

 Exploits current policy with probability  𝜀 

 

 

 



 Their purpose is to provide knowledge about 

which actions are rational in particular 

scenarios 

 

 This knowledge is established by considering 

the statistics of action choices over the 

lifetime of the agent 

 

 Correspond to general common sense 

behaviours 

 

 



 Perception-based action priors depend on 

the agent’s sensory features 

 

 Acquiring Perception based Action Priors 
 Gathered by solving many tasks in the same or similar 

domain 

 Maintains 𝛼-counts which are dependent on 

observations 

 

 

 

 

 Action prior is 𝜃𝑜 𝑎 ~Dir(𝛼𝑜(𝑎)) 

 

 

 



 Defined as a tuple 𝑆, 𝐴, 𝑂 , 𝑇,  𝑍, 𝑅, 𝛾  where  
 S  states,  

 A actions, 

 O observations,  

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ,  

 𝑍: 𝑆 × 𝐴 × 𝑂 → 0,1 , 

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ, 

 𝛾 ∈ [0,1] 
 

 States are partially observable 

 



 Solving a POMDP is very similar to solving an 

MDP 

 

 Similarities 
 State transitions are still stochastic  

 Value function is a function of our current state 

 We still perform Bellman backups to compute 𝑉  

 

 Differences 
 Agent maintains a probability distribution of where it may be in 

space 

 Agent can make (stochastic) observations from its current belief  



 Belief State 
 Probability distribution over world states 

 

 Example 
 Uniform Belief state 

 

 

 

 



 Belief transitions 
 After taking action  𝑎  and observing  𝑜, transitions 

are computed using 

 

 
 

 

 

 known as the Belief Update formula 

 

 Example 
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 Rewards 
 The reward of taking an action from some belief is the 

reward function over the belief state distribution 

 

 

 

 

 Value Functions 
 The value of a belief is computed using  
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 Value Functions 
 We can express 

 

 

 

 more compactly using   

 

 

 Where 

 

  

 

 

 is called an  alpha-vector 

 

 

 

   



Ss

sbsVbV )(

  bbV 

)(,),(),( 21 nsVsVsV 

)|(,),|(),|( 21 bsPbsPbsPb n



 Value Functions 
 The optimal value of a belief is computed using 

 

 

 
 The value function of a POMDP can be represented 

using linear line segments representing alpha-vectors 

 

 Example 

   bbV  


max*



 Value Iteration 
 The value of a belief at time 𝑡 is computed to be 

 

 

 

 

 Here we compute  𝒱𝑡+1, the parsimonious  

 

 representation of  𝑉𝑡+1 from  𝒱𝑡, the parsimonious  

 

 representation of 
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 Value Functions 
 The most naive way to construct  𝒱𝑡+1 is by 

enumerating all possible actions and observation 
mappings from  𝒱𝑡. 

 

 Thus 𝒱𝑡+1 = 𝐴 |𝒱𝑡||𝒪| 

 

 Curse of history and  

 dimesionality problem 

 make POMDPs  

 computationally  

 intractable 

 

 But many 𝛼-vectors in  𝒱𝑡   

 may be dominated by 

 others  

 



 Value Functions 
 Pruning 

 

 

 

 

 

 

 

 

 

 

 Improves computational speeds 



 Early Algorithms 
 Sample a set of beliefs 𝐵  from 𝓑 to approximate the belief space 

and compute an approximately optimal value function over 
those sampled points 

 

 Later Algorithms 
 focus on reachable beliefs 𝑅(𝑏0) from an initial belief point 𝑏0 

 

 SARSOP 
 focuses on the optimally reachable beliefs 𝑅∗(𝑏0) from an initial 

belief point 𝑏0  

 

 



 

 



 Algorithm Overview 
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0  

 

 

 



 Algorithm Overview 
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0 

 

1. Sample new belief points with bias towards 𝑅∗ 

 

2. Backup the information of the                                    

children of (similarly to Bellman                                 

backup) 

 

3. Prune dominated 𝛼-vectors and                                     

not needed nodes 

 

4. Repeat until convergence 



 Sampling 
 Upperbound 

 initialised using the MDP, FIB or Sawtooth 

 Approximation 

 

 Lowerbound  

 initialised using Fixed Action Policy or Blind Policy 

 

 

 

 Goal is too minimise the  

 the gap between  

 and       at 𝑏 
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 Sampling Strategy 

 
◦ Traverse down the tree using  

 action with the highest upper bound 𝑉 𝑏  

 the observation that makes the largest 

 contribution to the gap at the root  

 
◦ Note 

 The algorithm keeps a sampling threshold  

 of 𝛾−𝑡߳, where the target gap size at 𝑏0 is  ߳  

 
 



 Selective Deep Sampling 

 

 We may sometimes want to go deeper past the 

𝛾−𝑡߳ threshold 

 

 Predict 𝑉∗(𝑏) and see if knowing it will improve the 

bounds at the root 

 if  yes  then go deeper 

 if  no  then stop  

 

 



 Selective Deep Sampling 

 
◦ Prediction 

 features: initial upper bound and entropy of 𝑏  

 

 

 

 

 

 

 

 use the average of the beliefs or the initial upper 

bound if bin is empty  

 

 



 Pruning 

 

 Prunes 𝛼-vector only if it is dominated over 𝑅∗  

 (SARSOP uses beliefs 𝐵 ∈ 𝑇𝑅 as a proxy for 𝑅∗) 

 

 If          , prunes all sampled points in the 

subtree after taking action 𝑎 at 𝑏 

 

 If             for all  𝑎¬𝑖  at every point 𝑏′ within 𝛿 of 𝑏 

prune  𝑎𝑖 
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 To show how action priors can accelerate the workings 

of the SARSOP algorithm through the implementation of 

action priors 

 
 Gather Action Priors using Reinforcement learning and 

the SARSOP algorithm 

 

 Action Priors from SARSOP 
1. Gathered from Sampling and 

2. Simulation 

 



 Using the priors 

 

 Will be used as an add on to prune away the alpha 

vectors of the SARSOP algorithm 

 

 Will be used to choose actions in the sampling 

technique of SARSOP  

 

 

 

 



 Domain 

 Maze domain  in which we allow a robot agent to 

travel from 

 Tasks will be to travel from an initial location to some 

goal location 

 
 

 

 



 Robot Perception Capability 

 
 

 

 



 

 

Domain 


