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 Operational Uncertainty 
 Ambiguity in a robot's self-perceived state 

 adds ambiguity into the robot's state of operation. 

 Root cause of unsafe or risky behaviour  

 

 Autonomous robots are overwhelmed with 

contingencies i.e 

 
 

 

 



 Dynamic Environments 
◦ Handling uncertainty is essential 

 Control errors 

 limited sensing accuracy 

 inaccurate models of the environment 

 

 Decision Making under imperfect state 

information 
 Depends on all states 

 Requires a sensing proficiency 

 

 

 



 Disadvantage 
 Computationally expensive!!! 

 

 

 

 

 

 

 

 

 

 Solution 
 POMDPs 

 

 

 

 

 

 

 

 

 

 



 Defined as a tuple 𝑆, 𝐴, 𝑇,  𝑅, 𝛾  where  
 S  states,  

 A actions,  

 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] , 

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ , 

 𝛾 ∈ [0,1] 
 

 States are fully observable 

 



 Goal of a learning agent 

 Compute the policy 𝜋 𝑠 :   𝑆 → 𝐴 

 

 Example: 
 Domain 
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 Optimal policy  𝜋∗ 𝑠  



 Example: 
 Optimal policy  𝜋∗ 𝑠  



 Example: 
 Policy changes with due to living reward 



 Value functions 
 Assigns a value to every state 

 

 Value of a state 
 Expected reward/return of starting at that state and 

following a particular policy 𝜋 𝑠   
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 Value of an action in a state 
 Expected reward/return of starting at a state  𝑠, taking 

that action  𝑎, and then following a particular policy 
𝜋 𝑠   

 

 

 

 Optimal sought after quantities 
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 Value Iteration 
 The value of a state at time 𝑡 is computed to be 

 

 

 

 

 where 𝑉0 𝑠 = 0 
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 Value Iteration 
 The value of a state at time 𝑡 for a policy  𝜋  is 

computed to be  

 

 

 

 

 where 𝑉0 𝑠 = 0 
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 Uses a trial and error approach to finding a 

policy  

 

 Agent Learns from experience 

 

 Q-Learning 
 Model free algorithm 

 Exploration vs Exploitation 

 Learns an optimal policy 

 



 Q-Learning 
 Agent acts randomly in domain with probability  1 − 휀 

 Exploits current policy with probability  휀 

 

 

 



 Their purpose is to provide knowledge about 

which actions are rational in particular 

scenarios 

 

 This knowledge is established by considering 

the statistics of action choices over the 

lifetime of the agent 

 

 Correspond to general common sense 

behaviours 

 

 



 Perception-based action priors depend on 

the agent’s sensory features 

 

 Acquiring Perception based Action Priors 
 Gathered by solving many tasks in the same or similar 

domain 

 Maintains 𝛼-counts which are dependent on 

observations 

 

 

 

 

 Action prior is 𝜃𝑜 𝑎 ~Dir(𝛼𝑜(𝑎)) 

 

 

 



 Defined as a tuple 𝑆, 𝐴, 𝑂 , 𝑇,  𝑍, 𝑅, 𝛾  where  
 S  states,  

 A actions, 

 O observations,  

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ,  

 𝑍: 𝑆 × 𝐴 × 𝑂 → 0,1 , 

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ, 

 𝛾 ∈ [0,1] 
 

 States are partially observable 

 



 Solving a POMDP is very similar to solving an 

MDP 

 

 Similarities 
 State transitions are still stochastic  

 Value function is a function of our current state 

 We still perform Bellman backups to compute 𝑉  

 

 Differences 
 Agent maintains a probability distribution of where it may be in 

space 

 Agent can make (stochastic) observations from its current belief  



 Belief State 
 Probability distribution over world states 

 

 Example 
 Uniform Belief state 

 

 

 

 



 Belief transitions 
 After taking action  𝑎  and observing  𝑜, transitions 

are computed using 

 

 
 

 

 

 known as the Belief Update formula 

 

 Example 
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 Rewards 
 The reward of taking an action from some belief is the 

reward function over the belief state distribution 

 

 

 

 

 Value Functions 
 The value of a belief is computed using  
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 Value Functions 
 We can express 

 

 

 

 more compactly using   

 

 

 Where 

 

  

 

 

 is called an  alpha-vector 
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 Value Functions 
 The optimal value of a belief is computed using 

 

 

 
 The value function of a POMDP can be represented 

using linear line segments representing alpha-vectors 
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 Value Iteration 
 The value of a belief at time 𝑡 is computed to be 

 

 

 

 

 Here we compute  𝒱𝑡+1, the parsimonious  

 

 representation of  𝑉𝑡+1 from  𝒱𝑡, the parsimonious  

 

 representation of 
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 Value Functions 
 The most naive way to construct  𝒱𝑡+1 is by 

enumerating all possible actions and observation 
mappings from  𝒱𝑡. 

 

 Thus 𝒱𝑡+1 = 𝐴 |𝒱𝑡||𝒪| 

 

 Curse of history and  

 dimesionality problem 

 make POMDPs  

 computationally  

 intractable 

 

 But many 𝛼-vectors in  𝒱𝑡   

 may be dominated by 

 others  

 



 Value Functions 
 Pruning 

 

 

 

 

 

 

 

 

 

 

 Improves computational speeds 



 Early Algorithms 
 Sample a set of beliefs 𝐵  from 𝓑 to approximate the belief space 

and compute an approximately optimal value function over 
those sampled points 

 

 Later Algorithms 
 focus on reachable beliefs 𝑅(𝑏0) from an initial belief point 𝑏0 

 

 SARSOP 
 focuses on the optimally reachable beliefs 𝑅∗(𝑏0) from an initial 

belief point 𝑏0  

 

 



 

 



 Algorithm Overview 
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0  

 

 

 



 Algorithm Overview 
 Successively build a tree 𝑇𝑅 through sampling from 𝑏0 

 

1. Sample new belief points with bias towards 𝑅∗ 

 

2. Backup the information of the                                    

children of (similarly to Bellman                                 

backup) 

 

3. Prune dominated 𝛼-vectors and                                     

not needed nodes 

 

4. Repeat until convergence 



 Sampling 
 Upperbound 

 initialised using the MDP, FIB or Sawtooth 

 Approximation 

 

 Lowerbound  

 initialised using Fixed Action Policy or Blind Policy 

 

 

 

 Goal is too minimise the  

 the gap between  

 and       at 𝑏 
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 Sampling Strategy 

 
◦ Traverse down the tree using  

 action with the highest upper bound 𝑉 𝑏  

 the observation that makes the largest 

 contribution to the gap at the root  

 
◦ Note 

 The algorithm keeps a sampling threshold  

 of 𝛾−𝑡߳, where the target gap size at 𝑏0 is  ߳  

 
 



 Selective Deep Sampling 

 

 We may sometimes want to go deeper past the 

𝛾−𝑡߳ threshold 

 

 Predict 𝑉∗(𝑏) and see if knowing it will improve the 

bounds at the root 

 if  yes  then go deeper 

 if  no  then stop  

 

 



 Selective Deep Sampling 

 
◦ Prediction 

 features: initial upper bound and entropy of 𝑏  

 

 

 

 

 

 

 

 use the average of the beliefs or the initial upper 

bound if bin is empty  

 

 



 Pruning 

 

 Prunes 𝛼-vector only if it is dominated over 𝑅∗  

 (SARSOP uses beliefs 𝐵 ∈ 𝑇𝑅 as a proxy for 𝑅∗) 

 

 If          , prunes all sampled points in the 

subtree after taking action 𝑎 at 𝑏 

 

 If             for all  𝑎¬𝑖  at every point 𝑏′ within 𝛿 of 𝑏 

prune  𝑎𝑖 
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 To show how action priors can accelerate the workings 

of the SARSOP algorithm through the implementation of 

action priors 

 
 Gather Action Priors using Reinforcement learning and 

the SARSOP algorithm 

 

 Action Priors from SARSOP 
1. Gathered from Sampling and 

2. Simulation 

 



 Using the priors 

 

 Will be used as an add on to prune away the alpha 

vectors of the SARSOP algorithm 

 

 Will be used to choose actions in the sampling 

technique of SARSOP  

 

 

 

 



 Domain 

 Maze domain  in which we allow a robot agent to 

travel from 

 Tasks will be to travel from an initial location to some 

goal location 

 
 

 

 



 Robot Perception Capability 

 
 

 

 



 

 

Domain 


